Kamis, 13 Juni 2013

energi angin

TUGAS MAKALAH

ENERGI DAN DASAR KONVERSI ENERGI ELEKTRIK

DOSEN:

ANDI PAWAWOI, M.T

KELOMPOK 10

image

NURHANDINI 1110953003

PRIANDIKA 1110953005

NURUL ANNISA 1110953013

FIKKY SYOFYAN 1110953025

MISYE ADRIANDA 1110953035

JURUSAN TEKNIK ELEKTRO

FAKULTAS TEKNIK

UNIVERSITAS ANDALAS

PADANG

2013

ENERGI ANGIN

Energi merupakan bagian penting dalam kehidupan masyarakat karena hampir semua aktivitas manusia selalu membutuhkan energi. Misalnya untuk penerangan, proses industri atau untuk menggerakkan peralatan rumah tangga diperlukan energi listrik, untuk menggerakkan kendaraan baik roda dua maupun empat diperlukan bensin, serta masih banyak peralatan di sekitar kehidupan manusia yang memerlukan energi. Sebagian besar energi yang digunakan di Indonesia berasal dari energi fosil yang berbentuk minyak bumi dan gas bumi. Ketergantungan terhadap bahan bakar fosil setidaknya memiliki tiga ancaman serius, yakni: (1) Menipisnya cadangan minyak bumi, (2) Kenaikan / ketidakstabilan harga akibat laju permintaan yang lebih besar dari produksi minyak, (3) Polusi gas rumah kaca (terutama CO2) akibat pembakaran bahan bakar fosil.

Krisis energi yang melanda Indonesia, khususnya energi listrik telah memaksa berbagai pihak untuk mencari solusi dalam mengatasi persoalan ini. Banyak sekali penelitian yang telah dilakukan untuk mencari sumber energy alternatif selain dari minyak bumi dan batubara. Pemanfaatan energi matahari,angin dan air sudah banyak dilakukan baik dalam sekala kecil maupun besar. Salah satu yang sedang popular adalah pemanfaatan tenaga air dan angin. Banyak sekali orang membuat kincir angin dan kincir air untuk dirubah menjadi energi listrik.

Oleh karena itu dengan mengetahui proses konversi energi angin menjadi energi listrik dapat menjadikan bahan pertimbangan dalam mengembangkan energi angin menjadi salah satu sumber energi alternatif yang terbarukan dan tidak menimbulkan polusi bagi lingkungan.

Salah satu energi terbarukan yang berkembang pesat di dunia saat ini adalah energi angin. Energi angin merupakan energi terbarukan yang sangat fleksibel. Energi angin dapat dimanfaatkan untuk berbagai keperluan misalnya pemompaan air untuk irigasi, pembangkit listrik, pengering atau pencacah hasil panen, aerasi tambak ikan/udang, pendingin ikan pada perahu-perahu nelayan dan lain-lain. Selain itu, pemanfaatan energi angin dapat dilakukan di mana-mana, baik di daerah landai maupun dataran tinggi, bahkan dapat di terapkan di laut, berbeda halnya dengan energi air.

Pada dasarnya angin terjadi karena ada perbedaan suhu antara udara panas dan udara dingin. Didaerah katulistiwa, udaranya menjadi panas mengembang dan menjadi ringan, naik keatas dan bergerak kedaerah yang lebih dingin. Sebaliknya daerah kutub yang dingin, udaranya menjadi dingin dan turun ke bawah. Dengan demikian terjadi suatu perputaran udara, berupa perpindahan udara dari kutub utara ke garis katulistiwa menyusuri permukaan bumi, dan sebaliknya suatu perpindahan udara dari garis katulistiwa kembali ke kutub utara, melalui lapisan udara yang lebih tinggi.

image

Gambar 1 Skema terjadinya angin pasat

Gambar diatas melukiskan terjadinya angin pasat secara skematik. Dimana angin berjalan dari daerah katulistiwa naik keatas menuju kutub, dari kutub angin turun ke bawah menuju daerah katulistiwa dan seterusnya. Jadi pada prinsipnya angin terjadi karena adanya perbedaan suhu udara di beberapa tempat dipermukaan bumi.

Potensi Tenaga Angin

Energi Kinetik dari angin dapat dipakai untuk menjalankan turbin angin, tetapi dalam kenyataannya sangat sedikit wilayah yang memiliki angin yang bertiup terus menerus. Namun begitu di daerah Pesisir atau daerah di ketinggian, angin yang cukup tersedia konstan.

Listrik yang dihasilkan dari system konversi energy angin akan bekerja optimal pada siang hari dimana angin berhembus cukup kencang disbanding pada malam hari, sedangkan penggunaan listrik biasanya aka meningkat pada malam hari. Untuk mengantisipasinya system ini sebaiknya tidak langsung digunakan untuk keperluan produk-produk elektronik, namun terlebih dahulu disimpan dalam satu media seperti aki atau baterai sehingga listrik yang keluar besarnya stabil dan bisa digunkan kapan saja.

Turbin Angin

1. Jenis Turbin Angin

Dalam perkembangannya, turbin angin dibagi menjadi dua jenis turbin angin Propeller dan turbin angin Darrieus. Kedua jenis turbin inilah yang kini memperoleh perhatian besar untuk dikembangkan. Pemanfaatannya yang umum sekarang sudah digunakan adalah untuk memompa air dan pembangkit tenaga listrik. Turbin angina terdiri atas dua jenis, yaitu :

a. Turbin angin Propeller adalah jenis turbin angin dengan poros horizontal seperti baling – baling pesawat terbang pada umumnya. Turbin angin ini harus diarahkan sesuai dengan arah angin yang paling tinggi kecepatannya.

imageGambar 1.a Turbin angin Propeller

b. Turbin angin Darrieus merupakan suatu sistem konversi energi angin yang digolongkan dalam jenis turbin angin berporos tegak. Turbin angin ini pertama kali ditemukan oleh GJM Darrieus tahun 1920. Keuntungan dari turbin jenis Darrieus adalah tidak memerlukan mekanisme orientasi pada arah angin (tidak perlu mendeteksi arah angin yang paling tinggi kecepatannya) seperti pada turbin angin propeller.

imageGambar 1.b Turbin angin Darrieus

Setiap jenis turbin angin memiliki ukuran dan efisiensi yang berbeda. Untuk memilih jenis turbin angin yang tepat untuk suatu kegunaan diperlukan tidak hanya sekedar pengetahuan tetapi juga pengalaman. Pada umumnya turbin angin yang mempunyai jumlah sudu banyak (soliditas tinggi) akan mempunyai torsi yang besar. Turbin angin jenis ini banyak digunakan untuk keperluan mekanikal seperti pemompaan air, pengolahan hasil pertanian dan aerasi tambak. Sedangkan turbin angin dengan jumlah sudu sedikit, misalnya dua atau tiga, digunakan untuk keperluan pembangkitan listrik. Turbin angin jenis ini mempunyai torsi rendah tetapi putaran rotor yang tinggi. Gambar 1.2 menjelaskan bahwa rotor dengan jumlah sudu banyak akan mempunyai torsi yang besar tetapi efisiensi tidak terlalu tinggi atau sebaliknya.

Jika dikaitkan dengan sumber daya angin, turbin angin dengan jumlah sudu banyak lebih cocok digunakan pada daerah dengan potensi energi angin yang rendah karena rated wind speed-nya tercapai pada putaran rotor dan kecepatan angin yang tidak terlalu tinggi. Sedangkan turbin angin dengan sudu sedikit (untuk pembangkitan listrik) tidak akan beroperasi secara effisien pada daerah dengan kecepatan angin rata-rata kurang dari 4 m/s.

Dengan demikian daerah-daerah dengan potensi energi angin rendah, yaitu kecepatan angin rata-rata kurang dari 4 m/s, lebih cocok untuk dikembangkan turbin angin keperluan mekanikal. Jenis turbin angin yang cocok untuk keperluan ini antara lain american tipe multi blade, cretan sail dan savonius

imageGambar 1.2 Berbagai Jenis turbin angin

2. Kontruksi Turbin Angin

2.1 Sudu

Untuk mendapatkan hasil yang optimal maximal dari sebuah kincir angin maka perlu diperhatikan sebagai berikut:

a. Bentuk sudu seperti sekerup atau memuntir, sehingga aerodinamisnya semakin baik.

b. Untuk mendapatkan energi yang lebih baik sayap – sayap dipasang langsung pada rotor.

c. Untuk sudu yang ideal berjumlah 3 buah sudu, karena menghasilkan pembagian gaya dan keseimbangan yang lebih baik.

imageGambar 2.1 Rotor Sudu dari Turbin Angin

2.2 Generator

Generator AC dan generator DC memiliki perbedaan prinsip. Untuk generator DC kumparan jangkar ada pada bagian rotor dan terletak di antara kutub-kutub magnit yang tetap di tempat, diputar oleh tenaga mekanik. Pada generator AC, konstruksinya sebaliknya yaitu, kumparan jangkar disebut juga kumparan stator karena berbeda pada tempat yang tetap, sedangkan kumparan rotor bersamasama dengan kutub magnet diputar oleh tenaga mekanik.

Jika kumparan rotor yang berfungsi sebagai pembangkit kumparan medan magnet yang terletak di antara kutub magnet utara dan selatan diputar oleh tenaga air atau tenaga lainnya, maka pada kumparan rotor akan timbul medan magnet atau fluks yang bersifat bolak-balik atau fluks putar. Flux putar ini akan memotong-motong kumparan stator, sehingga pada ujung-ujung kumparan stator timbul gaya gerak listrik karena pengaruh induksi dan flux putar tersebut. Gaya gerak listrik (ggl) yang timbul pada kumparan stator juga bersifat bolak-balik, atau berputar dengan kecepatan sinkron terhadap kecepatan putar rotor.

a. Generator AC
Pada generator AC dipakai sebuah medan magnetic yang berputar sehingga energi listrik dan lilitan stator dapat dikeluarkan. Arus penguatan untuk rotor dihasilkan oleh satu atau lebih lilitan generator yang dipasang pada poros dimana juga rotor terpasang. Listrik yang dihasilkan disearahkan dengan bantuan dioda. Dioda adalah elemen pengantar tanggung yang meneruskan arus listrik hanya pada satu arah. Generator AC jenis praktis menghasilkan arus bolak balik tiga fase dengan frekuensi yang tergantung dan jumlah putaran rotor. Hal ini praktis tidak memungkinkan penghubungan jaringan (50Hz), kecuali kalau dengan perantaraan pengaturan putaran jaringan dapat disinkronisasikan. Jika generator ini dihubungkan dengan sebuah jembatan perata arus, maka dapat diperoleh arus searah dengan keuntungan yang telah disebut terdahulu.

b. Generator DC
Bekerjanya generator DC berdasarkan pengaruh timbal balik antara medan-medan magnetik dari stator dan rotor. Di dalam lilitan stator, arus tiga fase yang dihubungkan membangkitkan medan magnetik yang berputar. Karena ini terjadilah medan magnetik di dalam rotor sehingga di dalam lilitan-lilitan yang dihubungkan dengan singkat, mengalir arus. Sebagai akibatnya arus ini mengubah medan rotornya sedemikian rupa sehingga rotor itu berputar. Di medan rotor dan medan stator selalu harus ada perubahan, sebab kalau tidak begitu mesinnya tidak dapat bekerja.

Jadi, rotor itu tidak akan pernah berputar sinkron dengan medan rotor. Kalau motornya yang berputar, rotor itu berputar mengikuti medan stator. Perbedaan antara putaran rotor dan medan stator disebut selip dan dinyatakan dengan proses dan putaran sinkron. Bila rotor ini berputar lebih cepat dan pada medan stator, maka mesinnya bekerja sebagai generator. Juga di sini terdapat selip. Tegangan yang dihasilkan adalah sefase dengan tegangan jaringan; variasi jumlah putaran (dalam batas-batas tertentu) diserap oleh selip.

a) Keuntungan generator DC
1. Generator ini tidak begitu peka terhadap gangguan. Di dalamnya tidak terdapat sikat-sikat arang, gelanggelang seret dan pengaturan-pengaturan yang mudah rusak. Terutama bagi kincir angin, hal ini sangat penting karena kincir angin tidak mudah dimasuki untuk perawatan.

2. Sedikit variasi pada jumlah putaran ditampung oleh selip, sehingga alat-alat yang mahal untuk mengkonstarikan putaran tidak diperlukan.

3. Sebuah generator menghasilkan arus setelah diperkuat oleh tegangan jaringan. Jadi, generator itu merupakan suatu keseluruhan dengan jaringan.

b) Kekurangan generator DC

1. Mesinnya memerlukan arus mati jaringan. Walaupun arus mati sebenarnya tidak membangkitkan daya di dalam mesin, tetapi itu dapat menimbulkan kerugian pada kawat-kawat dimulai dan sentral. Dampak ini dapat dibatasi dengan kompensasi arus mati.

2. Arus gerak awal sangat tinggi, sehingga akibat dan menurunnya tegangan pada saluran-saluran dapat terjadi kelipan inisalnya pada cahaya lampu.
Sebuah varian pada generator DC adalah mesin nadi gelang seret. Di sini lilitan rotornya tidak dihubungkan secara singkat, tetapi dikeluarkan melalui gelang-gelang seret. Dengan mengatur arus rotorya, beberapa variasi yang lebih besar dalam jumlah putarannya masih dapat diserap.

3. Penyimpan Energi
Karena keterbatasan ketersediaan akan energi angin (tidak sepanjang hari angin akan selalu tersedia) maka ketersediaan listrik pun tidak menentu. Oleh karena itu digunakan alat penyimpan energi yang berfungsi sebagai back-up energi listrik. Ketika beban penggunaan daya listrik masyarakat meningkat atau ketika kecepatan angin suatu daerah sedang menurun, maka kebutuhan permintaan akan daya listrik tidak dapat terpenuhi. Oleh karena itu kita perlu menyimpan sebagian energi yang dihasilkan ketika terjadi kelebihan daya pada saat turbin angin berputar kencang atau saat penggunaan daya pada masyarakat menurun. Penyimpanan energi ini diakomodasi dengan menggunakan alat penyimpan energi. Contoh sederhana yang dapat dijadikan referensi sebagai alat penyimpan energi listrik adalah accu mobil.
Kendala dalam menggunakan alat ini adalah alat ini memerlukan catu daya DC (Direct Current) untuk mengcharge/mengisi energi, sedangkan dari generator dihasilkan catu daya AC (Alternating Current). Oleh karena itu diperlukan rectifier-inverter untuk mengakomodasi keperluan ini.


4. Rectifier-inverter
Rectifier berarti penyearah. Rectifier dapat menyearahkan gelombang sinusoidal (AC) yang dihasilkan oleh generator menjadi gelombang DC. Inverter berarti pembalik. Ketika dibutuhkan daya dari penyimpan energi (accu/lainnya) maka catu yang dihasilkan oleh accu akan berbentuk gelombang DC. Karena kebanyakan kebutuhan rumah tangga menggunakan catu daya AC ,maka diperlukan inverter

untuk mengubah gelombang DC yangdikeluarkan oleh accu menjadi gelombang AC, agar dapat digunakan oleh rumah tangga.

Pemilihan Tempat

Secara umum tempat-tempat yang baik untuk pemasangan turbin angin antara lain:

a. Celah di antara gunung. Tempat ini dapat berfungsi sebagai nozzle, yang mempercepat aliran angin.

b. Dataran terbuka. Karena tidak ada penghalang yang dapat memperlambat angin, dataran terbuka yang sangat luas memiliki potensi energi angin yang besar.

c. Pesisir pantai. Perbedaan suhu udara di laut dan di daratan menyebabkan angin bertiup secara terus menerus.

Walau pada dasarnya turbin angin dapat dipasang di mana saja di tempat tersebut di atas, pengkajian potensi angin tetap harus dilakukan untuk mendapatkan suatu sistem konversi energi angin yang tepat. Pengkajian potensi energi angin di suatu tempat dilakukan dengan mengukur dan menganalisis kecepatan dan arah angin. Analisis data angin dilakukan dengan menggunakan metoda statistik untuk mencari kecepatan angin rata-rata, durasi kecepatan angin dan distribusi frekwensi data angin. Jika informasi mengenai arah angin juga tersedia, analisis dengan menggunakan metoda wind rose dapat dilakukan untuk mengetahui kecepatan rata-rata, frekuensi dan energi angin di setiap arah mata angin. Pada prakteknya, penentuan tempat pemasangan sistem konversi energy angin dapat ditentukan dengan cara:

a. Pilih Tempat. Tempat ditentukan sesuai kebutuhan, kemudian potensi energi angin dikaji dari data yang didapat. Cara ini mempertimbangkan:

1. Aksesibilitas baik untuk pekerjaan konstruksi maupun perawatan,

2. Kondisi sosial budaya setempat,

3. Kepentingan lain

b. Pilih Potensi. Pemilihan tempat berdasarkan besarnya potensi energy angin yang tersedia. Semakin besar kecepatan angin rata-rata di suatu tempat akan semakin baik. Semakin tinggi potensi energi yang tersedia akan memberikan keuntungan berupa ukuran sistem konversi energy angin yang semakin kecil dan tidak perlu terlalu efisien sehingga pembuatannya akan lebih mudah dan murah.

Konversi Energi Angin

Prinsip dasar kerja dari turbin angin adalah mengubah energy mekanis dari angin menjadi energi putar pada kincir, lalu putaran kincir digunakan untuk memutar generator, yang akhirnya akan menghasilkan listrik.

image
Gambar 2 Skema Konversi Energi Angin

Dari prinsip dasar kerja turbin angin yang mengubah energi mekanis dari angin menjadi energi putar pada kincir, lalu putaran kincir digunakan untuk memutar generator, yang akhirnya akan menghasilkan listrik. Baling-baling menerima datangnya angin sehingga ia berputar pada porosnya, putarannya tidak terlalu cepat karena massanya yang besar, diteruskan oleh poros laju rendah ke belakang melalui gearbox. Gearbox mengubah laju putar menjadi lebih cepat, konsekuensinya dengan momen gaya yang lebih kecil, sesuai dengan kebutuhan generator yang ada di belakangnya. Generator kemudian mengubah energi kinetik putar menjadi energi listrik.

Daya angin dihasilkan dari pergerakan angin dan energi yang terkait dengan gerakan seperti itu adalah energi kinetik:

image          Dimana,

m = Massa udara dalam Kg

V = Kecepatan massa udara dalam m/s

Massa udara didefinisikan sebagai perkalian antara Volume dengan kepadatan:

image

dimana,

Q = Volume (m3)

ρ = Kepadatan/ kerapatan udara (Kg/m3)

Karena daya adalah energi per satuan waktu, oleh karena itu ekspresi daya dapat diturunkan sebagai berikut:

image

image

disini, dQ/ dt adalah debit rata-rata (m3/s). Debit adalah tingkat volume aliran, seperti yang telahdipahami bahwa setiap fluida mampat, debit (Q) adalah sama dengan produk daerah aliran penampang (A) dan kecepatan rata-rata nya (v) dimana,

A = daerah yang melawati rotor sudu. (m2)

v = kecepatan rata-rata (m/s)

sehingga persamaan daya angin menjadi;

image

Ketika kita berbicara tentang keunggulan dan kelemahan energi angin, hal yang pertamakali digambarkan dari energi angin adalah bahwa sumber energi ini secara ekologis dapat diterima, yang berarti bahwa energi angin tidak seperti bahan bakar fosil yang memiliki kontribusi lebih besar terhadap dampak perubahan iklim. Energi angin tidak akan melanjutkan pencemaran terhadap planet kita seperti bahan bakar fosil selama ini. Misalnya, turbin angin tunggal 1-MW dapat menghemat sekitar 2.000 ton karbon dioksida dalam satu tahun.

Energi angin juga merupakan sumber energi terbarukan yang berarti tidak dapat habis seperti bahan bakar fosil. Energi angin yang tersedia di atmosfer lima kali lebih besar daripada konsumsi energi dunia saat ini. Potensi energi angin di darat dan dekat pantai sekitar 72 TW (tera watt) yang melebihi lima kali lebih banyak dari penggunaan energi dunia saat ini dalam segala bentuk.

Keuntungan lain dari tenaga angin adalah fakta bahwa setiap orang bisa membangun atau membeli turbin angin untuk memanfaatkan energi angin dan memenuhi kebutuhan energi di rumah sendiri. Turbin angin tidak perlu banyak perawatan dan seseorang tidak perlu menjadi jenius untuk meng-handlenya. Tentu saja memiliki turbin angin sendiri juga berarti menghindari terjadinya pemadaman listrik bila terjadi kerusakan jaring PLN. Juga, listrik tenaga angin akan menjadi lebih hemat biaya seiring dengan adanya banyak penelitian yang dilakukan untuk memotong biaya instalasi, meningkatkan efisiensi dan untuk memastikan agar energi angin menjadi lebih dapat diandalkan.

Ketika berbicara mengenai kekurangan energi angin, hal pertama yang harus disebutkan adalah ketersediaan angin. Di beberapa tempat angin kencang sering ditemui yang membuat pemanfaatan energi angin menjadi sangat mudah, sementara di beberapa tempat angin tidak cukup kuat untuk menciptakan listrik yang memadai.

Biaya instalasi tenaga angin yang masih relatif tinggi merupakan kelemahan lain dari energi angin. Secara kasar, dibutuhkan sekitar 10 tahun untuk mengembalikan biaya instalasi energi angin. Memang, ini bukan waktu yang sangat panjang, namun biaya instalasinya yang besar masih menjadi penghalang bagi banyak orang untuk memanfaatkan energi angin.

Kelemahan lainnya dari tenaga angin adalah bangunan pembangkit listrik tenaga angin dapat mempengaruhi estetika lanskap. Fasilitas listrik tenaga angin juga perlu direncanakan dengan hati-hati, lokasi dan pengoperasiannya harus meminimalkan dampak negatif pada populasi burung dan satwa liar.

0 komentar:

Posting Komentar